The Complexity of Finding kth Most Probable Explanations in Probabilistic Networks

نویسندگان

  • Johan Kwisthout
  • Hans L. Bodlaender
  • Linda C. van der Gaag
چکیده

In modern decision-support systems, probabilistic networks model uncertainty by a directed acyclic graph quantified by probabilities. Two closely related problems on these networks are the Kth MPE and Kth Partial MAP problems, which both take a network and a positive integer k for their input. In the Kth MPE problem, given a partition of the network’s nodes into evidence and explanation nodes and given specific values for the evidence nodes, we ask for the kth most probable combination of values for the explanation nodes. In the Kth Partial MAP problem in addition a number of unobservable intermediate nodes are distinguished; we again ask for the kth most probable explanation. In this paper, we establish the complexity of these problems and show that they are FPand FP PP -complete, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Most Probable Explanations for Probabilistic Database Queries (Extended Abstract)

Probabilistic databases (PDBs) have been widely studied in the literature, as they form the foundations of large-scale probabilistic knowledge bases like NELL and Google’s Knowledge Vault. In particular, probabilistic query evaluation has been investigated intensively as a central inference mechanism. However, despite its power, query evaluation alone cannot extract all the relevant information...

متن کامل

Most Probable Explanations for Probabilistic Database

Probabilistic databases (PDBs) have been widely studied in the literature, as they form the foundations of large-scale probabilistic knowledge bases like NELL and Google’s Knowledge Vault. In particular, probabilistic query evaluation has been investigated intensively as a central inference mechanism. However, despite its power, query evaluation alone cannot extract all the relevant information...

متن کامل

Most probable explanations in Bayesian networks: Complexity and tractability

An overview is given of definitions and complexity results of a number of variants of the problem of probabilistic inference of the most probable explanation of a set of hypotheses given observed phenomena.

متن کامل

The Most Probable Database Problem

This paper proposes a novel inference task for probabilistic databases: the most probable database (MPD) problem. The MPD is the most probable deterministic database where a given query or constraint is true. We highlight two distinctive applications, in database repair of key and dependency constraints, and in finding most probable explanations in statistical relational learning. The MPD probl...

متن کامل

Most Probable Explanations for Probabilistic Database Queries

Forming the foundations of large-scale knowledge bases, probabilistic databases have been widely studied in the literature. In particular, probabilistic query evaluation has been investigated intensively as a central inference mechanism. However, despite its power, query evaluation alone cannot extract all the relevant information encompassed in large-scale knowledge bases. To exploit this pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011